1 Claus Andersen
Master Student

University of Aarhus
Supervisor: Gerth S. Brodal

ITIADALGO “.- . =7

CENTER FOR MASSIVE DATA ALGORITHMICS

What is a minimum spanning tree (MST) function OPTIMALMST(G) Status
if E(G) =0 then
Consider a connected graph with n vertices and m edges. A return Because log®(n) < 3 for all n < 2%, the use of decision
graph could be a model of r — [log® [V(G)]] trees is impractical, since the MST of a graph with < 3
« Cities (vertices) and distances between cities (M,C) « Partition(G, r, €) vertices can easily be found with O(m) comparisons. The
(edge wieghts) I" « DecisionTree(C') number 2 should be compared with the number of
« Computers/routers on a (inter)network (vertices) Let k — |C| and F = {Fy,..., Fi} atoms in the universe wihch is around 2°%°.
and the average latencies (edges weights) Go— G\ (RLU...UF)-M
- Etc. Fo < DenseCase(G,) All helper functions except “DecisionTree” are
In general the edge weights are some kind of cost function. Gy — FoUFU...UF,UM implemented, tested and partly documented (i.e.
(F',Gc) « Boruvka2(Gy) Partition, DenseCase, Boruvka2). It remains to glue
Let us assume the edge weights are distinct. A spanning tree F « OptimalMST(G.) these steps together, run tests on the full algorithm, and
of a graph, is a subset of edges, which form a tree and return (F'UF") of course to document this :)

connects all vertices. The tree has n-1 edges. The MST of a

graph is the spanning tree which have the minimum total

cost. Suppose we wish to minimize the total cable length The a|gorithm
when connecting citites with power or data lines. The MST of

the graph is the optimal way to lay out these cables without

redundancy (without cycles). The algorithm works recursively by first removing some non-candidate edges, and then find some real MST edges and

contracting the graph along these. This procedure runs until there is only one vertex left. The head points of the procedure is:

Introduction « Grow DJP-contractable partitions of the graph with vertex bound log®(n) = log(log(log(n)))
With a soft heap as priority queue with a constant error rate &, this takes O(m) time
The soft heap corrupts some edge weights by raising their priority. These edges are used later.
» Find the MST of each partition with a optimal number of edge comparisons, using decision trees.
» Contract all partitions in the graph and remove the corrupted edges. Find the MST of this dense graph in O(m) time using the
“DenseCase” algorithm by [Fredman and Tarjan].
* Build the union of the previously found MST's and the corrupted edges. Run two Borukvka phases on this graph.
» The two Boruvka phases identifies some real MST edges and contracts the graph into a graph with less than m/2 edges and n/4
vertices. This takes O(m) time.
« Call recursively on the Boruvka-contracted graph.
» Return real MST edges: The union of the recursive call and the MST edges found in the Boruvka phases.

The classical text book algorithms solving the MST problem
have worst case running time O(m log(n)).

This algorithm [Seth Pettie, Vijaya Ramachandran] solves the
problem in time proportional to 7*(m,n), which is the optimal
number of edge comparisons needed to determine the MST
of any graph with n vertices and m edges. l.e. The running
time is O(T*(m,n)).

It is obvious that T*(m,n) = m, since we need to consider all
edges. The idea is to use optimal decision trees for
sufficiently small subgraphs of the input graph. Because the
decision trees are sufficiently small, we can afford to build
them. The subgraphs are found in linear time using the soft
heap [Chazelle].

Total running time: Each point takes O(m) time, except the decision tree point which makes an optimal number of comparions.
We recurse on a graph where the number edges and vertices are reduced geometrically, so this will not hurt the running time.
Therefore the total running time is proportional to the optimal number of edge comparisons.

